chapter12_3_2 Modeling in the Frequency Domain for Example 12.7
\% Onwubolu, G. C.
\% Mechatronics: Principles \& Applications
\% Elsevier
\%
\% Mechatronics: Principles \& Applications Toolbox Version 1.0
\% Copyright © 2005 by Elsevier
\%
\% Chapter 12.3: Modeling in the Time Domain
\%
\% Example 12.7: Transfer functions represented either by numerator and $\%$ denominator or an LTI object can be converted to state space. For numerator
$\%$ and denominator representation, the conversion can be implemented using $\%[A, B, C, D]=$ tf2ss(num, den). The A matrix is returned in a form called the \% controller canonical form, which will be explained in Chapter 5 in the text. To
\% obtain the phase-variable form, $[\mathrm{Ap}, \mathrm{Bp}, \mathrm{Cp}, \mathrm{Dp}]$, we perform the following \% operations: $A p=\operatorname{inv}(P)^{*} A * P ; B p=\operatorname{inv}(P) * B ; C p=C * P, D p=D$, where P is a matrix
\% with 1's along the anti-diagonal and 0's elsewhere. These transformations will be
\% explained in Chapter 5. The command $\operatorname{inv}(X)$ finds the inverse of a square $\%$ matrix. The symbol * signifies multiplication. For systems represented as

LTI

\% objects, the command $\mathrm{ss}(\mathrm{F})$, where F is an LTI transfer-function object, can be used
\% to convert F to a state-space object. Let us look at Example 3.4 in the text. For the
\% numerator-denominator representation, notice that the MATLAB response associates
\% the gain, 24 , with the vector C rather than the vector B as in the example in the text.
\% Both representations are equivalent. For the LTI transfer-function object, the
\% conversion to state space does not yield the phase-variable form. The result is
\% a balanced model that improves the accuracy of calculating eigenvalues, which are
\% covered in Chapter 4. Since ss(F) does not yield familiar forms of the state \% equations (nor is it possible to easily convert to familiar forms), we will have $\%$ limited use for that transformation at this time.
'Example 12.7' \% Display label.
'Numerator-denominator representation conversion' \% Display label.
'Controller canonical form' \% Display label.
num=30*[1 3020 50]; \quad \% Define numerator of $G(s)=C(s) / R(s)$.
den=[1 60050075 40]; \quad \% Define denominator of G(s).

[$A, B, C, D]=t f 2 s s(n u m, d e n)$	
\% canonical form,	
	store matrices A, B, C, D, and
\% display.	
'Phase-variable form'	\% Display label.
$\mathrm{P}=[000$ 1;0 01 0;0 100 0;1 000 0]; \% Form transformation matrix.	
$A p=\operatorname{inv}(P) * A * P$	\% Form A matrix, phase-variable form.
$B p=i n v(P) * B$	\% Form B vector, phase-variable form.
$\mathrm{Cp}=\mathrm{C} * \mathrm{P}$	\% Form C vector, phase-variable form.
Dp=D	\% Form D phase-variable form.
'LTI object representation'	\% Display label.
T=tf(num,den) \%	\% Represent T(s)=24/(s^3+9s^2+26s+24) as an LTI transfer-function object.
Tss=ss(T)	\% Convert T(s) to state space.
Pause	

